Standard pieces of iron, steel and non ferrous alloy microstructures. # Standard Microstructure together with photos and detailed explanations. Originated in the Tokyo Metroporitan Industrial Technology Center Under the Leadership of Emeritus Prof. Takejiro Murakami, D.Sc. with CD-ROM ### **Example of Standard Microstructure** Standard piece No.3 pearlite #### Pearlite Structure: Lamellar structure of ferrite and cementite. White layers are cementite and somewhat of them appears a setup in relief. Magnification: ×400 Etching reagent: 3% nital (keep 6~9sec) Composition: C 0.86%, Si 0.17%, Mn 0.22%, P 0.011%, S 0.004% Heat treatment: 950°C annealing Hardness: HB 180-200 Standard piece No.20 White pig Iron #### White Pig Iron Structure: White parts are cementite. Black parts are pearlite transformed from austenite. Honeycomb parts are eutectic structures of austenite and cementite called Ledeburite. Magnification: ×120 Etching reagent: 3% nital (keep 7~8sec) Composition: C 2.95%, Si 0.80%, Mn 0.36%, P 0.036%, S 0.150% Treatment: As Cast Hardness: White pig iron of chilled roll : HS 60~75 Cr alloyed white pig iron: HS 90 Standard piece No.54 Decaburized structure #### **Decaburized Structure** (High Speed Steel) Structure: The part on left side is Decarburized structure. Black part on the decarburized structure is Troostite. Network parts show Double carbide. The part on the right side is Quenching Martensite. Magnification: (including the retained Austenite) Etching reagent: ×400 Composition: 50% FeCl₃ C 0.88%, Si 0.32%, Mn 0.30%, P 0.018%, S 0.004% Cr 3.99%, Mo 4.92%, W 6.18%, V 1.86% Heat Treatment: 1240°C × 20min(oxidizing atmosphere), Oil quenching Standard piece No.83 High manganese steel #### High manganese Steel (Water-Toughened Structure) Structure: austenite. Magnification: ×400 Composition: C 1.07%, Si 0.24%, Mn 12.34%, P 0.023%, S 0.007%, Cr 0.17%, Cu 0.14% Heat Treatment: 1000°C × 20min, Water quenching Mechanical properties: Tensile strength: 75kg/mm² Hardness : about HB 210 At the beginning of the world, humankind discovered soft iron, and using its malleability they made farming implements and everyday tools. Later, they found that by increasing its carbon content they could strengthen it. Eventually they developed the technics for manufacturing steel. Furthermore, they found that it showed great hardness (at the stage of Martensite), to a degree that had no equal in the world, when treated by quenching. As a result, they made remarkably sharp tools and blades. Then, by increasing the carbon content of iron, they found they could use it for anything, such as the structures of all kinds of machines, and by directly pouring melted steel into a mold they succeeded in the manufacture of cast steel. We have great admiration for the efforts and abilities of our predecessors. | Standard
Piece
Number | JIS mark | com | fain
ponent
(%) | Heat treatment operation mark | The detai | ls of Heat treatment | Microstructure | | |-----------------------------|--------------------------------|-----|-----------------------|-------------------------------|---|---|---|--| | | | | | Standard | d condition | of the structure | | | | 1 | Armco Iron | С | 0.02 | HNR | 950℃ HNR | | Ferrite | | | 2 | S45 C | С | 0.45 | HNR | 930℃ HNR | | Pearlite + Ferrite | | | 3 | SK 85 | С | 0.8 | HA | 930°C (Fc) | | Pearlite | | | 4 | SK 120 | С | 1.2 | HA | 950°C (Fc) | | Network Cementite | | | 5 | SK 120 | С | 1.2 | HA | 760°C (Sc) 72 | 0℃ (Fc) | Spheroidized Cementite | | | | | | | Quench | ing, Temp | ering Structure | | | | 6 | SK 85 | С | 0.8 | HQ | 850°C HQ(W) | | Martensite | | | 7 | SK 85 | С | 0.8 | HQ, HT | 850°C (W), 35 | | Troostite (Tempering) | | | 8 | SK 85 | С | 0.8 | HQ, HT | 840℃ HQ(W), 580℃ HT | | Sorbite (Tempering) | | | | 40 | | | Isother | mal Quenc | hing Structure | | | | 9 | SK 85 | С | 0.8 | HQA | 930°C→400°C×50s
Salt bath Isothermal Quenching | | Upper Bainite | | | 10 | SK 85 | С | 0.8 | HQA | 885°C→295°C×15min
Salt bath Isothermal Quenching,
Water cooling | | Lower Bainite | | | | | • | | C | uenching | Structure | | | | 11 | SK 120 | С | 1.2 | HQ | 110℃ HQ(O) | THE RESERVE TO SERVE THE PARTY OF | Martensite and Retained Austenite | | | 12 | SK 120 | С | 1.2 | HQ | 800℃ HQ(W) | . 100℃ HT | Martensite and Spheroidized Cementit | | | 13 | S 45 C | С | 0.45 | HQ | 850℃ HQ(W) | | Martensite and Fine Pearite | | | 14 | S 30 C | С | 0.3 | HQ | 930℃ (Ac)→720℃ HQ(W) | | Martensite and Ferrite | | | | | | | Induc | tion Harde | ned Structure | | | | 15 | S 45 C | С | 0.45 | HQI | | 70℃ on the surface by | Fine Martensite | | | 10000 | | 183 | (111122222 | | _australia Barguria ac | ating, Spray hardening | 300 (200 (200 (200 (200 (200 (200 (200 (| | | | | Car | burized | d, Decarbur | ized, and (| Gas Nitrocarburize | ed Structure | | | 16 | S 15 CK | C | 0.15 | HC | 900℃×3h Ca | | Carburized Structure | | | 17 | S 45 C | С | 0.45 | HNTS | 880°C×1h 58
570°C×3.5h I | 30℃×1.5h HT
HNTS | Gas Nitrocarburizing | | | 18 | SK 85 | С | 0.8 | (Dec) | 900°C×6h in | | Decarburized Structure | | | | | | | 0 | verheated | Structure | | | | 19 | S 30 C | С | 0.3 | (OH) | 1240℃×40min, (Ac) | | Widmanstatten structure | | | | | | | (| Cast Iron S | Structure | | | | 20 | White pig Iron | ĭ | | C 2.95 | Si 0.80 | As cast | Ledeburite and Pearlite | | | 21 | Gray Cast Iro | | | C 3.43 | Si 2.06 | As cast | Flake graphite and Pearlite | | | 22 | Spheroidal Gr | | | C 3.45 | Si 2.81 | As cast | Spheroidal Graphite and Pearlite | | | 23
24 | Eutectic Grap
Black Heart N | | | C 3.78
C 2.67 | Si 2.09
Si 1.07 | As cast
Malleablizing | Eutectic Graphite and Pearlite
Temper Carbon and Ferrite | | | 77.55 | | | E 11 2 7 39 808 | | ast Steel | | | | | | | | | | | | | | #### Outline of operation mark HA: Annealing HNR: Normalizing HQA: Austemper HQ: Quenching (Dec): Decarburization HQ(O): Oil quenching HC: Carburizing HNTS: Nitriding (Ac): Air cooling (Sc): Slow cooling (OH): Over heating (Fc): Furance cooling HT: Tempering HQI: Induction hardning HQ(W): Water quenching (Sz): Sub-Zero In order to make all the kinds of tools which we need firs.t, having added ferrous-carbon steel to chrome, we intensively carbonized it, and further, by adding tungsten at the same time, we manufactured double carbide which has remarkable machining properties as well as durability, Then, we manufactured impact resisting tools, wear resistant non-deformation tools, and hot working steels. High speed steels, for tool blades which are not corroded by heating during cutting. And do not wear especially high speed steels that contain cobalt, keep their hardness tough in high temperatures and consequently result in durable cutting tools. High speed steels have made remarkable progress. In addition, the powder high speed steels, with a carbonized microstructure has realized advanced mechanical features. | Standard
Piece
Number | Piece Main use JIS mark componer | | component | Heat treatment operation mark | The details of Heat treatment | Microstructure | | |-----------------------------|--|---|---|------------------------------------|--|--|--| | | | | 201.02 | Alloy tool | steel 14 pcs. | | | | 33
34 | For Cutting | SKS 2 | C 1.04
Cr 0.64
W 1.01 | HA
HQ, HT | 820°C×40min→780°C×70min
→(Sc)(20°C/h)→580°C→(Fc)
860°C×30min HQ(O), 180°C×60min HT | Annealed Structure Hardened, Tempered Structure | | | 35
36 | For Wear
resistance
& non-de-
formation | SKS 3 | C 0.97
Mn 1.01
Cr 0.88
W 0.75 | HA
HQ, HT | 740°C × 30min→(Sc)(15°C/h)→550°C→(Fc)
840°C × 30min 180°C × 60min HT | Annealed Structure Hardened, Tempered Structure | | | 37 | For anti-
Impact | SKS 4 | C 0.52
Cr 0.89
W 0.85 | HQ, HT | 875℃×30min HQ(O), 180℃×60min HT | Hardened, Tempered Structure | | | 38
39
40
41 | For Wear
resistance
& non-de-
formation | SKD 11 | C 1.47
Cr 11.96
Mo 0.83
V 0.25 | HA
HQ
HQ, HT(L)
HQ, HT(H) | 850°C × 3h→(Sc)(20°C/h)→580°C→(Ac)
1030°C × 30min HQ(O)
1030°C × 30min HQ(O), 180°C × 60min HT
1030°C × 30min HQ(O), 520°C × 60min HT | Annealed Structure Hardened Structure Hardened, Tempered Structure (L | | | 42
43
44 | | SKD 61 | C 0.39
Si 0.93
Cr 5.15
Mo 1.24
V 0.59 | HA
HQ
HQ, HT | 830℃×3h→(Sc)(20℃/h)→600℃→(Ac)
1030℃×30min HQ(O)
1030℃×30min HQ(O), 560℃×60min HT | Annealed Structure
Hardened Structure
Hardened, Tempered Structure | | | 45 | For Hot
working | SKD 4 | C 0.34
Cr 2.59
W 5.36
V 0.35 | HQ, HT | 1030℃×30min HQ(O), 650℃×90min HT | Hardened, Tempered Structure | | | 46 | SKT 4 | | C 0.50
Ni 1.67
Cr 1.23
Mo 0.32
V 0.14 | HQ, HT | 850°C×30min HQ(O), 650°C×60min HT | Hardened, Tempered Structure | | | |), | | | High Spee | ed Steel 11 pcs. | | | | 47
48 | | SKH 2
W
system | C 0.83
Cr 4.00
W 17.13
V 0.86 | HA
HQ, HT×3 | 850°C × 3h→(Sc)(20°C/h)→600°C→(Ac)
1260°C × 90sec HQ(O)
560°C × 60min HT × 3 | Annealed Structure Hardened, Tempered Structure | | | 49
50 | For | SKH 4
Co
system | C 0.82
Cr 4.04
W 17.27
V 1.11
Co 9.14 | HQ
HQ, HT×3 | 1300℃×90sec HQ(O)
1300℃×90sec HQ(O),
570℃×60min HT×3 | Hardened Structure Hardened, Tempered Structure | | | 51
52
53
54 | Heavy
cutting | SKH 51
Mo
system | C 0.88
Cr 3.99
Mo 4.92
W 6.18
V 1.86 | HA
HQ
HQ, HT×3
(Dec) | 850°C × 3h→(Sc)(20°C/h)→600°C→(Ac)
1220°C × 90sec HQ(O)
1220°C × 90sec HQ(O), 550°C × 60min HT × 3
1240°C × 20min HQ(O) | Annealed Structure
Hardened Structure
Hardened, Tempered Structure
Decarburized Structure | | | 55 | | SKH 55
Mo
system | C 0.88
Cr 3.94
Mo 4.96
W 6.04
V 1.81
Co 4.70 | HQ, HT×3 | 1240℃×90min HQ(O),
570℃×30min HT×3 | Hardened, Tempered Structure | | | 56
57 | P/M
High
Speed
Steel | HAP40
(Equiv-
alent to
SKH 57) | C 1.28
Cr 4.23
Mo 4.99
W 6.49
V 3.06
Co 8.00 | HQ
HQ, HT×3 | 1200℃×90sec HQ(O)
1200℃×90sec HQ(O), 560℃×30min HT×3 | Hardened Structure Hardened, Tempered Structure | | As for structural alloy steel, we give two examples of high tensile steel that contain some special elements, mainly Si, Mn, which produce a light-weight highly tensile steel. In addition, high tensile steel is easy to weld and minimizes the hardness of the weld and its brittleness when notched. We also show two kinds of high tensile structural steel, case hardening steel, and nitriding steel in this booklet. As to steels for special applications, we gave as example a free cutting steel, bearing steel, high manganese steel, six kinds of stainless steel, two kinds of heat resisting steel, spring steel, and at last, permanent magnet steel, Alnico V and silicon steel. Permanent magnet steels have usually varied depending on the forging methods used, but they have been manufactured in various forms as well as on a large scale by casting methods and have been used in factories throughout the world. | Standard
Piece
Number | Kind of
steel | JIS mark | comp | ain
onent
%) | Heat treatment
operation
mark | Details of Heat treatment | Microstructure | | |-----------------------------|--|---------------------|----------------------|--|--|--|---|--| | 70.50 | | - 525 | | | Structural a | lloy steel 9 pcs. | | | | 61 | High
tensile | SM 50 | C
Si
Mn | 0.10
0.24
0.75 | | As rolling | As Rolled | | | 62 | strength
steel (80kg) C 0.10
class Mn 0.75 | | 0.24 | HQ, HT 910°C HQ, 640°C (Ac) | | Thermal Refining Structure | | | | 63
64 | SNCM 439 | | C
Ni
Cr
Mo | 0.39
1.68
0.77
0.17 | HA
HQ, HT | 850°C×2h→630°C (15°C/h), 630°C×2h (Fc)
850°C×30min HQ(O)→630°C×60min HT | Annealed Structure Thermal Refining Structure | | | 65
66 | Machine
structural | SCM 435 | C
Cr
Mo | 0.37
1.13
0.15 | HA
HQ, HT | 850°C×2h→650°C (15°C/h), 650°C×2h (Fc)
850°C×30min HQ(O), 600°C×60min HT | Annealed Structure Thermal Refining Structure | | | 67
68 | alloy steel | SCM 415 | C
Cr
Mo | 0.15
1.14
0.18 | HC
HQ, HT | 930℃×2h (Carb), 930℃ 1h diffused→(Fc)
930℃×2h (Carb),
930℃×2h diffused, 880℃ HQ(O)180℃×2h HT | Carburized Structure
Carburized Hardened and
Tempered Structure | | | 69 | | SACM 645 | Cr
Al
Mo | 0.48
1.43
0.89
0.17 | HNTS 930℃×30min HQ(O), 700℃×60min HT 500℃×50h HNTS | | Nitrided Structure | | | | | | 1110 | | Steel for Sp | ecial use 14 pcs. | | | | 70 | Free
cutting
steel | SUM 23 | C
Mn
S | 0.06
0.85
0.275 | HNR | 900℃×20min (Ac) | Normalized Structure | | | 71
72 | Bearing
steel | SUJ 2 | C
Mn
Cr | 0.98
0.32
1.33 | HA
HQ, HT | 920°C×40min (Ac), 780°C×70min→580°C
(Fc) (10°C/h)
850°C×30min HQ(O), 180°C×60min HT | Spheroidized Structure
Hardened, Tempered Structu | | | 73 | | SUS 403 | | 0.13
11.87 | HQ, HT | 1000°C×30min HQ(O), 700°C×60min HT | Thermal Refined Structure | | | 74 | | SUS 420 J2 | C
Cr | 0.38
13.52 | HQ, HT | 950°C×30min HQ(O), 200°C×60min HT | Thermal Refining Structure | | | 75 | | SUS 430 | С | 0.09
16.69 | HA | 750°C × 30min (Ac) | Annealed Structure | | | 76 | | SUS 304 | Ni | 0.06
18.50
9.52 | HQ | 1100℃×30min HQ(W) | Solution Treated Structure | | | 77 | Stainless
steel | SUS 321 | Ni
Ti | 0.04
17.05
9.23
0.32 | HQ | 930℃×60min HQ(W) | Stabilized Structure | | | 78 | | SUS 316 | | 0.06
17.57
12.34
2.40 | HQ, HT | 1100℃×30min HQ(O), 700℃×60min HT | Hardened, Tempered Structu | | | 79 | | SUS 631
(17-7PH) | C
Cr
Ni
Al | 0.05
16.49
7.38
0.94 | HQ, HT | Pre-treatment (1030°C Water cooling solid solution treatment), 950°C \times 10min Ac, -78 °C 8h Sz, 510 °C \times 60min HT | Precpition Hardning Structure | | | 80 | Heat
resisting | SUH 31 | | 0.39
14.15
14.50
2.40
1.71 | HQ | 980°C×45min HQ(O) | Solution Treated Structure | | | 81 | steel SUH 31 | | Si | 0.15
24.55
0.57
19.40 | HQ | 1050℃×30min HQ(W) | Solution Treated Structure | | | 82 | Spring
steel | SUR 6 | C
Si
Mn | 0.59
1.63
0.86 | HQ, HT | 860°C×30min HQ(O), 500°C×90min HT | Thermal Refined Structure | | | 83 | High
manganese
steel | SC Mn H2 | C
Mn | 1.07
12.34 | HQ | 1000℃×20min HQ(W) | Water-Toughened Structure | | | | | | | | Electron ma | gnet materials 2 pcs. | | | | 84 | for
Permanent
magnet | Alnico | Al
Ni
Co
Cu | 7.8
15.3
25.1
3.3 | | After Casting, 1260°C solid solution treatment, 600°C Aging | Cas, Aged Structure | | | 85 | Silicon steel | | Si | 3.02 | HA | 800°C × 3h Vacum annealing | Annealed Structure | | # Standard Microstructure Group 4 Non-ferrous Alloy 25types Due to remarkable advances in nonferrous metallic materials, such as copper alloys, aluminum alloys, titanium alloys and superalloys, the MS Committee, the Study Group of Material Technology Education, has thoroughly reviewed the standard microscopic structures of these nonferrous metallic materials based on careful examinations. This renewed set of Standard Microscopic Structure Samples, as with its former versions, provides a good understanding of the quality, heat treatment conditions and microscopic structure of material by offering their standard pieces and explanatory documents thereon, along with detailed explanations on a CD-ROM. #### YAMAMOTO SCIENTIFIC TOOL LABORATORY CO., LTD. 2-15-4, Sakae-cho, Funabashi-city, Chiba Pref., Japan TEL +81-47-431-7451 | Standard
Piece | The Property of Material | JIS N | Minne Churchen | | |--------------------|--|------------------------|-----------------------|-------------------------------------| | Number | The Property of Waterian | Number of Standard | Mark of Alloy | Micro Structure | | | Copper and its | alloy 8 pcs. | | | | 101 Oxy | ygen Free Copper | H3100B(P,R):H3250(B) | C1020 | Annealed Structure | | 102 High | gh Strength Wear Resistant Brass | H5120 | CAC303 (+Si, Ni) | Hot Extruded Structure | | 103 Alu | uminum Bronze | H3250 | C6191 | Hot Extruded Structure | | 104 Pho | osphor Bronze | H3270 | C5212 | Annealed Structure | | 105 Cup | pro Nickel | H3100 | C7150 | Annealed Structure | | 106 Nicl | kel Silver | H3110(P,R): H3270(B,W) | C7541 | Annealed Structure | | 107 Nicl | ke Silicon Copper Alloy | Z3234 | Ni 2 Si | Age Hardened Structure | | 108 Cop | pper Chromium Alloy | Z3234 | Type 2 | Age Hardened Structure | | | Aluminium and i | ts alloy 10 p | ocs. | | | 109 Wro | ought Aluminum | H4000 | A1100 | Annealed Structure | | 110 Al-N | Mn-Mg Alloy | H4000 | A3004 | Annealed Structure | | 111 Al-N | Mg Aluminum alloy | H4000 | A5052 | Annealed Structure | | 112 Al-N | Mg-Si Aluminum Alloy | H4000 | A6063 | Annealed Structure | | 113 Al-2 | Zn-Mg-Cu Alloy (Extra Super Duralumin) | H4000 | A7075 | Annealed Structure | | 114 Alun | minum Alloy Castings AC2B (Lautal Ai-Si-Cu Alloy) | H5202 | AC2B | As Cast Structure | | 115 Alun | minum Alloy Castings AC4H (Ai-Si-Mg Alloy) | H5202 | AC4CH | Age Hardened Structure | | | minum Alloy Castings AC8A (Lo-Ex: Low Expansion Si-Cu-Mg-Ni Alloy) | H5202 | AC8A | Age Hardened Structure | | 117 Alun | minum Alloy Die Castings ADC 12 (Ai-Si-Cu Alloy) | H5302 ADC12 | | As Cast Structure | | | minum Alloy Die Castings ADC 14 (Hyper Silmuin
Si-Cu-Mg Alloy) | H5302 | ADC14 | As Cast Structure | | | The other metal and | its alloy except | Copper, Alum | inium 7 pcs. | | 119 Con | mmercially Pure Titanium | H4600 | ТР340Н | Annealed Structure | | 120 a 7 | Titanium Alloy (Ti – 5Al – 2.5Sn Alloy) | (ASTM Grade6) * * | | Annealed Structure | | 121 α - | - β Titanium Alloy (Ti –6Al –4V Alloy) | (ASTM Grade5) * * | | Annealed Structure | | 122 β Τ | `itanium Alloy (Ti-15V-3Cr-3Sn-3Al Alloy) | (ASTM 4914) * * | | Annealed Structure | | 123 Tita | anium – Nickel Shape Memory Alloy | H7107 | | shape memorial structure | | 124 Nicl | kel Base Superalloy : Alloy 713C | (ASTM 5391B) * * * | | As Cast Structure | | 125 Nicl | kel – Base Superalloy : Hastelloy X | H4551 | NW6002(NiCr21Fe18Mo9) | Annealed Structure | | | Appendix (Only the | explanation) | | | | Appendix1 Zinc | c Alloy for Die Castings | H5301 | ZDC2 | As Cast Structure After Die Casting | | Appendix2 Whi | nite Metal | H5401 | WJ2 | As Cast Structure | | Appendix3 Mag | gnesium Alloy Die Castings MDC1D (Mg-Al-Zn Alloy) | H5303 | MDC1D | As Cast Structure | *Parentheses is Standard Numbers other than JIS ## No.101 Oxygen Free Copper Homogeneous polygonal grains. The crystal grain boundaries are linear because they do not contain inclusions. # No.116 Aluminum Alloy AC8A (Lo-Ex: Low Expansion Al-Si-Cu-Mg-Ni Alloy) The white base represents a primary α -Al phase. The grayish white, flat, plate crystals represent a eutectic Si phase. The black phase represents a compound phase of Al3Ni and Y (Al-Cu-Ni). No.121 $\alpha - \beta$ Titanium Alloy (Ti-6Al-4V Alloy) A standard annealed structure, where two phases—the white proeutectoid α -phase (equiaxial crystals) and the black retained β phase—coexist. # Standard Microstructure Group 6 Surface Modification of Metals 25types - Recently, there have been remarkable advances in surface modification and surface heat-treatment technologies for metallic materials. A variety of such technologies are becoming increasingly available to achieve metallic materials with desired qualities by modifying a material's surface or its adjacent properties. This trend presents unprecedented challenges to the people involved in the materials industry. - Under the guidance of the MS Committee, the Study Group of Material Technology Education, YSTL has developed "Standard Microstructure Group 6," a set of standard microstructure samples of metallic materials subject to 25 major surface modification or heat treatment technologies, as described below. - Group 6 addresses the 25 most popular combinations of materials and surface treatment technologies. Following deliberations of the MS Committee, it was determined what the most representative microstructures of the materials should look like when they are surface treated, and YSTL produced standard samples of those microstructures. The attached booklet provides detailed descriptions of material, treatment and microstructure, aided by a photograph of each sample's microstructure and an explanatory CD-ROM, to ensure a better understanding of the samples. - Combined use with the previously released Group 1 to Group 7 sets of standard microstructure samples is recommended. #### YAMAMOTO SCIENTIFIC TOOL LABORATORY CO., LTD. 2-15-4, Sakae-cho, Funabashi-city, Chiba Pref., Japan TEL +81-47-431-7451 | | | | | Intended Qualit | | |-----|---|-----------------------------|---------------------|-----------------------|----------------------| | No. | Surface Modification Technology | Material
(JIS) | Abrasion resistance | Fatigue
resistance | Corrosion resistance | | 601 | Induction Hardening | SCM435 | \triangle | 0 | | | 602 | Flame Hardening | FCD700 | \bigcirc | \triangle | | | 603 | Laser Hardening | SCM435 | \bigcirc | | | | 604 | Vacuum Carburizing | SCM415 | \bigcirc | | | | 605 | Carbide Dispersion Curburizing | MAC14
(Mitsubishi Steel) | \bigcirc | 0 | | | 606 | Plasma Nitriding (I) | S45C | \bigcirc | | \triangle | | 607 | Plasma Nitriding (II) | SCM435 | \bigcirc | | \triangle | | 608 | Liquid Nitriding | S45C | \bigcirc | | \triangle | | 609 | Oxinitriding | S45C | \bigcirc | \triangle | \triangle | | 610 | Gas Nitroc-curburizing | SPCC | \bigcirc | | \triangle | | 611 | Sulpho-Nitriding (Low sulphur) | SCM435 | \bigcirc | \triangle | | | 612 | Sulpho-Nitriding (High sulphur) | SCM435 | 00000000000 | \triangle | | | 613 | Boronizing (Boriding) | S35C | \circ | \triangle | | | 614 | Steam Treatment | S45C | \circ | | \triangle | | 615 | Low-Temperature Sulphurizing | SCM415 | \circ | | | | 616 | Carbide Coating (TD treatment) | SKD11 | \circ | | | | 617 | Thermal CVD (chemical vapor deposition) | SKD11 | \circ | | 0 | | 618 | Plasma CVD | SKD11 | \bigcirc | | | | 619 | PVD (physical vapor deposition) | SKD11 | \bigcirc | | | | 620 | Aluminum Diffusion Coating (alminizing) | S10C | \triangle | | 0 | | 621 | Chromium Diffusion Coating | S10C | \bigcirc | | | | 622 | Hardness Chromium Plating | SWY11 | 0 0 0 | | | | 623 | Electroless Nickel Plating | SWY11 | \bigcirc | | | | 624 | Spraying | S10C | \bigcirc | | | | 625 | Aluminum Anodization | A5052 (Al-Mg alloy) | \circ | | 0 | The \bigcirc and \triangle marks represent the intended quality. # No.608 Liquid Nitriding (S45C) No.616 Carbide Coating (TD treatment) (SKD11) No.609 Oxinitriding (S45C) No.619 PVD (physical vapor deposition) (SKD11) No.611 Sulpho-Nitriding (Low sulphur) (SCM435) No.623 Electroless Nickel Plating (SWY11) # Standard Microstructure Group 7 Abnormal Structure 23types Today, a variety of high-resolution microscopes and testing methods are available for testing, examining, and studying metallic materials, but optical microscopy and hardness tests are still in great demand in the industrial world. Conventionally, a microstructure sample usually meant a sample of the material's standard microstructure. However, many voices were heard at manufacturing sites, including those involved in heat treatment, asking for samples of defective microstructures, which are necessary to identify the causes of defects and to work out remedial measures. To achieve this, YSTL launched the development of standard samples of defective microstructures, with the cooperation and guidance of the people involved. The samples shown here represent only a fraction of the possible defective microstructures, but we believe this is a significant attempt to respond to the voices of on-site industrial engineers. #### YAMAMOTO SCIENTIFIC TOOL LABORATORY CO., LTD. 2-15-4, Sakae-cho, Funabashi-city, Chiba Pref., Japan $\;$ TEL +81-47-431-7451 | Sample
No. | Micro Structure | Material
(JIS) | Sample
No. | Micro Structure | Material (JIS) | |---------------|---|-------------------|---------------|---|----------------| | 701 | Ferrite and Martensite | SCM440 | 716 | Microstructure Resulting From
Low Temperature Decarburizing | SK85 | | 702 | Martensite and Fine Perlite | SK105 | | | GIZOE | | 703 | Martensite and Retained Austenite | SKS93 | 717 | Microstructure After High
Temperature Decarburizing
Followed by Quenching | SK85 | | 704 | Undissolved Carbide and Martensite | SKD11 | 710 | | 000 1415 | | 705 | Carbide-Free Martensite | SUJ2 | 718 | Excess Carburizing | SCM415 | | 706 | Coarse Martensite | SCM440 | 719 | Inhomogeneous Nitriding | SCM435 | | | | | 720 | Over-Nitriding | SACM645 | | 707 | Fibrous Microstructure with Martensite | S45C | 721 | Braunite | SPCC | | 708 | Carbide Segregation | SKD11 | 722 | Sensitization | SUS304 | | 709 | Mixed Grain Structure | SCM415 | 723 | Abnormal Microstructure of a
Spheroidal Graphite Cast Iron | FCD700 | | 710 | Microstructure Resulting
From Overheating | SKS93 | | After Isothermal Transformation | | | 711 | Microstructure Resulting
From Burning | SKH51 | Annexes | Descriptions of the defective | | | 712 | Quench Cracking | SK85 | | structures only.
Samples not provided. | | | 713 | Microstructure Resulting
From Imperfect Tempering | SUS420J2 | Annex 1 | Over Annealing | Former
SKS1 | | 714 | Microstructure Resulting From Imperfect Spheroidizing | SK85 | Annex 2 | Grinding Crack | SCM415 | | 715 | Grain Boudary Oxidation | SCM415 | Annex 3 | Melting | SCM440 | ## No.716 Microstructure Resulting From Low Temperature Decarburizing Seen in the photo to the left, the white band of about 0.2 mm in thickness represents a decarburized structure. To its right, you can see the spheroidal cementite structure of the base material. Because it is fully decarburized, the structure develops ferritic grain boundaries. (Material:eutectoid carbon steel) ## No.717 Microstructure After High Temperature Decarburizing Followed by Quenching The white portion on the left side of the photo represents a decarburized layer. Its underlying layer in black contains fine perlite and tempered martensite. To its right, you can see tempered martensite alone. (Material:eutectoid carbon steel) # No.714 Microstructure Resulting From Imperfect Spheroidizing The matrix is ferrite, and the black lines and spheroidal parts represent cementite. You can see some bands of incompletely spherodized carbide. (Material:eutectoid carbon steel) ## **BLOCKS FOR RELIABLE HARDNESS TEST** # Standard Blocks for Hardness To improve tester performance before use - Advantages Calibrating with the World's Most Accurate Blocks. - The Most Consistent and Reliable commercially available in the world. - Twice the Usable Test Areas. Thicker and More Stable ★New Product HRB Dual(HRB S+W):d-HRB 90,82,72,62,32 #### Types and nominal Hardness Values HR C 70,67,64,62,**60** HR C 57,55,**50**,45,**40**,35,30,25,20,10 HR A 87,85,83,**81**,78,75,71,**65**,56 HR30N 83,**81**,78,73,**67**,60,55,50,41 HR15N(45N) 92,**90**,87,85,**80**,75(43)(23) HRB S 100,95,**90**,82,72,**62**,52,**42**,32 ★HRB Dual(HRB S+W) : d-HRB **90**,82,72,**62**,32 HR30T S 78,72,62,**52**,42,38,32 HR15T S 87,82,78 HRE 90,HRM 107,67,HRL 118,92,HRR 123,105,HRF 90,HRS 90 HMV(1,0.1) 1600 HMV(1,0.1,0.01) 900,800,**700**,600,**500**,400,300,**200**,100,40 HMV(0.1,0.01,0.001) 30(Au) HV(30,1) 1000,900,800,700 HV(10,1) 600,500,400,300,200,150,100,40 UMV(0.01,0.002) 900,700,500,200 (Berkovich 9.8mN tested) ★HN-W Single crystal block for nanoindentation (≃430HV 0.01,0.001,Berkovich 9.8mN tested) HS 100,95,90,80,70,60,50,40,30,20,7 HLE(Dia) 850,800,700,600,500 HLD(WC) 880,830,730,630,520 HBW(10/3000) 600,550,500,450.**400**,350 HBW(10/3000) 300,250,229(d=4mm),200,180,150 HBW(10/500) 125,100 #### Combinations for diamond indenter verification HR C 55,25 HR45N 43,23 HR15N 90 Combinations for daily control HR C 60,50,30 HS 90,60,30 HBW 229 ## Charpy V-Notch Test Blocks In compliance with JIS B7740-1990 Feature:Extremely small irregularity in Charpy absorption energy(CV:3% or less) Material:SNCM439.Q.T(complying with JIS test piece No.4) NK verification provided. Type A approx. 30J Type B approx. 100J Type C approx. 160J 5 pieces each energy levels per 1set #### Standard Microstructure Standard pieces of metal material microstructures and detailed explanations with photographs and CD-ROM. Carbon steel, Cast iron Group 2. Alloy tool steel, High-speed tool steel Group 3. Structural alloy steel, steel for special use Group 4. Non-ferrous alloys Group 6. Metallic surface, modifications Group 1~6 25 types each Group 7. Abnormal structure (23 types) Group 1. #### A.G.S.ETCHING SET Conforms to JIS 0551 Etching set for revealing the prior Austenite Grainboundaries of steels for structural use in machines. ## Standard Piece for Spark Test Based on JIS G 0566-1980 (Manual with CD-ROM) For studying Grinding Spark Test for Steel. | Gr, "K" | Gr, "F" | Gr, "G" | Gr, "H" | |---------------|------------------|--------------|--------------------| | SUY | SUY | SKS2 | SNC631 | | S10C | S10C | SKS3 | SNC415 | | S20C | S15C | SKS4 | SNCM447 | | S45C | S20C | SKS93 | SNCM420 | | SK105 | S30C | SKD11 | SCr440 | | SKS2 | S35C | SKD4 | SCr420 | | SKD11 | S40C | SKD61 | SCM440 | | SKD61 | S45C | SKT4 | SCM415 | | SKH55 | S50C | SKH2 | SUS410 | | SUJ2 | S55C | SKH4 | SUS420J2 | | SCM440 | SK85 | SKH51 | SUS430 | | SCM415 | SK105 | SKH55 | SUS304 | | SUS420J2 | S10C(Carburized) | SKH57 | SUS316 | | SUS304 | SWRCH10R | SUJ2 | SUH3 | | SUP6 | FC30 | SKS3 | SUP6 | | (Educational) | (Carbon steel) | (Tool steel) | (Structural steel) | ### Hardnester Standard File for Scratch Hardness PAT. No. 196592 Manual with DVD HRC 8 Hardness(20~67) HV 8 Hardness(200~900) HV 16 Hardness(200~950) with one T.M each Hardness value. ## YAMAMOTO SCIENTIFIC TOOL LABORATORY CO.,LTD. 2-15-4, Sakae-cho,Funabashi-shi,Chiba Pref.,273-0018 Japan Tel.+81-47-431-7451 Fax.+81-47-432-8592 http://www.ystl.jp